Spin-Orbit and Magnetic Proximity-Induced Phenomena in Nanostructures Comprising Transition Metals, Insulators and 2D Materials

Mairbek Chshiev, Univ. Grenoble Alpes, CEA, CNRS, SPINTEC

June 26, 2020

In recent years, spin-orbit coupling based phenomena at interfaces comprising ferromagnetic (FM) metal, oxide (O) and nonmagnetic metal (NM) have been an object of great interest for spintronics including spin-orbitronics [1]. At the same time, a major attention of scientific community has been devoted to developments of emerging field of 2D and graphene spintronics [2]. In this talk I will provide theoretical insights into perpendicular magnetic anisotropy (PMA) [1,3-8], Dzyaloshinskii-Moriya interaction (DMI) [9-13] and magnetic proximity-induced phenomena [13-17] at interfaces comprising transition metals, insulators and graphene.

First, mechanisms of PMA [1,3-5] and its variation by applied electric field (VCMA) [6] or by ionic migration [7] at FM/O interfaces are unveiled using first-principles approaches. Strong enhancement of the PMA of Co films at Co/graphene interfaces is also discussed [8]. Next, microscopic mechanisms of DMI behavior at FM/NM [9], FM/O [9,10] and FM/graphene [11] interfaces are elucidated. Several approaches for DMI enhancement using trilayers with different FM/NM or FM/O interfaces [10] important for observation of room temperature skyrmions [12] are proposed. Possibility of controlling DMI by electric field (VCDMI) at NM/FM/O [10] or by hydrogenation at FM/graphene interfaces [13] are introduced as well. Finally, I will discuss magnetic phenomena in graphene induced by proximity of different insulators including europium chalcogenides [14,15], yttrium iron garnet (YIG), cobalt ferrite (CFO) [15] and bismuth ferrite (BFO) [17]. Large exchange-splitting values induced in graphene allow introduction of several proximity induced transport phenomena named proximity electro- (PER), magneto- (PMR), and multiferroic (PMER) resistance effects [16,17].

[1] B. Dieny and M. Chshiev, Rev. Mod. Phys. 89, 025008 (2017).
[2] S. Roche et al, 2D Materials 2, 030202 (2015).
[3] H. X. Yang. M. Chshiev, A. Manchon et al, Phys. Rev. B 84, 054401 (2011).
[4] A. Hallal, H. X. Yang, B. Dieny, and M. Chshiev, Phys. Rev. B 88, 184423 (2013).
[5] A. Hallal, B. Dieny, and M. Chshiev, Phys. Rev. B 90, 064422 (2014).
[6] F. Ibrahim, H. X. Yang, A. Hallal, B. Dieny, and M. Chshiev, Phys. Rev. B 93, 014429 (2016).
[7] F. Ibrahim, A. Hallal, B. Dieny, and M. Chshiev, Phys. Rev. B 98, 214441 (2018).
[8] H. X. Yang, A. D. Vu, A. Hallal, N. Rougemaille, J. Coraux, G. Chen, A. K. Schmid, and M. Chshiev, Nano Lett. 16, 145 (2016).
[9] H. X. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Phys. Rev. Lett. 115, 267210 (2015).
[10] H. X. Yang, O. Boulle, V. Cros, A. Fert & M. Chshiev, Sci. Rep. 8, 12356 (2018) .
[11] H. X. Yang, G. Chen, A. A. C. Cotta, A. T. N'Diaye, S. A. Nikolaev, E. A. Soares, W. A. A. Macedo, K. Liu, A. K. Schmid, A. Fert & M. Chshiev, Nature Mater. 17, 605 (2018).
[12] O. Boulle et al, Nature Nanotech. 11, 449 (2016).
[13] B. Yang, Q. Cui, J. Liang, M. Chshiev, and H. X. Yang,  Phys. Rev. B  101, 014406 (2020).
[14] H. X. Yang, A. Hallal, X. Waintal, S. Roche and M. Chshiev, Phys. Rev. Lett. 110, 046603 (2013).
[15] A. Hallal, F. Ibrahim, H. X. Yang, S. Roche and M. Chshiev, 2D Mater. 4, 025074 (2017).
[16] D. A. Solis, A. Hallal, X. Waintal, and M. Chshiev, Phys. Rev. B 100, 104402 (2019).
[17] F. Ibrahim, A. Hallal, D. Solis Lerma, X. Waintal, E. Y. Tsymbal and M. Chshiev, 2D Mater. 7, 015020 (2020).